Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Cell Death Differ ; 31(4): 431-446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418695

RESUMO

Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation, has emerged as a promising therapeutic strategy for cancer treatment, particularly in hepatocellular carcinoma (HCC). However, the mechanisms underlying the regulation of ferroptosis in HCC remain to be unclear. In this study, we have identified a novel regulatory pathway of ferroptosis involving the inhibition of Apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme with dual functions in DNA repair and redox regulation. Our findings demonstrate that inhibition of APE1 leads to the accumulation of lipid peroxidation and enhances ferroptosis in HCC. At the molecular level, the inhibition of APE1 enhances ferroptosis which relies on the redox activity of APE1 through the regulation of the NRF2/SLC7A11/GPX4 axis. We have identified that both genetic and chemical inhibition of APE1 increases AKT oxidation, resulting in an impairment of AKT phosphorylation and activation, which leads to the dephosphorylation and activation of GSK3ß, facilitating the subsequent ubiquitin-proteasome-dependent degradation of NRF2. Consequently, the downregulation of NRF2 suppresses SLC7A11 and GPX4 expression, triggering ferroptosis in HCC cells and providing a potential therapeutic approach for ferroptosis-based therapy in HCC. Overall, our study uncovers a novel role and mechanism of APE1 in the regulation of ferroptosis and highlights the potential of targeting APE1 as a promising therapeutic strategy for HCC and other cancers.


Assuntos
Carcinoma Hepatocelular , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Ferroptose , Neoplasias Hepáticas , Humanos , Ferroptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos Nus , Peroxidação de Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores
2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511396

RESUMO

Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to atherosclerotic calcification. In a previous study, we showed that glycogen synthase kinase-3ß (GSK3ß) inhibition induced ß-catenin and reduced mothers against DPP homolog 1 (SMAD1) in order to redirect osteoblast-like cells towards endothelial lineage, thereby reducing vascular calcification in Matrix Gla Protein (Mgp) deficiency and diabetic Ins2Akita/wt mice. Here, we report that GSK3ß inhibition or endothelial-specific deletion of GSK3ß reduces atherosclerotic calcification. We also find that alterations in ß-catenin and SMAD1 induced by GSK3ß inhibition in the aortas of Apoe-/- mice are similar to Mgp-/- mice. Together, our results suggest that GSK3ß inhibition reduces vascular calcification in atherosclerotic lesions through a similar mechanism to that in Mgp-/- mice.


Assuntos
Aterosclerose , Glicogênio Sintase Quinase 3 beta , Calcificação Vascular , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Calcificação Fisiológica , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/induzido quimicamente
3.
ChemMedChem ; 17(24): e202200456, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36194001

RESUMO

The glycogen synthase kinase 3ß (GSK-3ß) is a ubiquitous enzyme that is a validated target for the development of potential therapeutics useful in several diseases including retinal degeneration. Aiming at developing an innovative class of allosteric inhibitors of GSK-3ß potentially useful for retinal degeneration, we explored the class of squaramides. The developed compounds (6 a-l) were obtained through a nontoxic one-pot synthetic protocol, which employs low-cost goods and avoids any purification step. Ethanol was used as the reaction solvent, simultaneously allowing the pure reaction products' recovery (by precipitation). Out of this set of squaramides, 6 j stood out, from computational and enzymatic converging data, as an ATP non-competitive inhibitor of GSK-3ß of micromolar potency. When engaged in cellular studies using retinal pigment epithelial cells (ARPE-19) transfected with a luciferase reporter gene under the control of T-cell factor/lymphoid enhancer factor (TCF/LEF) binding sites, 6 j was able to dose-dependently induce ß-catenin nuclear accumulation, as shown by the increased luciferase activity at a concentration of 2.5 µM.


Assuntos
Células Epiteliais , Glicogênio Sintase Quinase 3 beta , Quinina , Degeneração Retiniana , Fatores de Transcrição TCF , Humanos , beta Catenina/metabolismo , Células Epiteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Luciferases/metabolismo , Transdução de Sinais , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Quinina/análogos & derivados , Quinina/síntese química , Epitélio Pigmentado da Retina
4.
J Enzyme Inhib Med Chem ; 37(1): 1724-1736, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35698879

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) catalyses the hyperphosphorylation of tau protein in the Alzheimer's disease (AD) pathology. A series of novel thieno[3,2-c]pyrazol-3-amine derivatives were designed and synthesised and evaluated as potential GSK-3ß inhibitors by structure-guided drug rational design approach. The thieno[3,2-c]pyrazol-3-amine derivative 16b was identified as a potent GSK-3ß inhibitor with an IC50 of 3.1 nM in vitro and showed accepted kinase selectivity. In cell levels, 16b showed no toxicity on the viability of SH-SY5Y cells at the concentration up to 50 µM and targeted GSK-3ß with the increased phosphorylated GSK-3ß at Ser9. Western blot analysis indicated that 16b decreased the phosphorylated tau at Ser396 in a dose-dependent way. Moreover, 16b effectively increased expressions of ß-catenin as well as the GAP43, N-myc, and MAP-2, and promoted the differentiated neuronal neurite outgrowth. Therefore, the thieno[3,2-c]pyrazol-3-amine derivative 16b could serve as a promising GSK-3ß inhibitor for the treatment of AD.


Assuntos
Doença de Alzheimer , Aminas , Glicogênio Sintase Quinase 3 beta , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Aminas/síntese química , Aminas/farmacologia , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Fosforilação , Proteínas tau/metabolismo
5.
Eur J Med Chem ; 236: 114301, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390715

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is a conserved serine/threonine kinase that participates in the transmission of multiple signaling pathways and plays an important role in the occurrence and development of human diseases, such as metabolic diseases, neurological diseases and cancer, making it to be a potential and promising drug target. To date, copious GSK-3ß inhibitors have been synthesized, but only few have entered clinical trials. Most of them exerts poor selectivity, concomitant off-target effects and side effects. This review summarizes the structural characteristics, biological functions and relationship with diseases of GSK-3ß, as well as the selectivity profile and therapeutic potential of different categories of GSK-3ß inhibitors. Strategies for increasing selectivity and reducing adverse effects are proposed for the future design of GSK-3ß inhibitors.


Assuntos
Glicogênio Sintase Quinase 3 beta , Neoplasias , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico
6.
Sci Rep ; 12(1): 4090, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260764

RESUMO

S-SCAM/MAGI-2 gene duplication is associated with schizophrenia (SCZ). S-SCAM overexpression in the forebrain induces SCZ-like phenotypes in a transgenic (Tg) mouse model. Interestingly, S-SCAM Tg mice show male-specific impairments in synaptic plasticity and working memory. However, mechanisms underlying the sex-specific deficits remain unknown. Here we report that S-SCAM Tg mice have male-specific deficits in synaptic GSK3ß functions, as shown by reduced synaptic protein levels and increased inhibitory phosphorylation of GSK3ß. This GSK3ß hyper-phosphorylation was associated with increased CaMKII activities. Notably, synaptic levels of Axin1, to which GSK3ß binds in competition with S-SCAM, were also reduced in male S-SCAM Tg mice. We demonstrated that Axin-binding is required for the S-SCAM overexpression-induced synaptic GSK3ß reduction. Axin stabilization using XAV939 rescued the GSK3ß deficits and restored the temporal activation of GSK3ß during long-term depression in S-SCAM overexpressing neurons. Interestingly, synaptic Axin2 levels were increased in female S-SCAM Tg mice. Female sex hormone 17ß-estradiol increased Axin2 expression and increased synaptic GSK3ß levels in S-SCAM overexpressing neurons. These results reveal the role of S-SCAM in controlling Axin-dependent synaptic localization of GSK3ß. Moreover, our studies point out the pathological relevance of GSK3ß hypofunction found in humans and contribute to understanding the molecular underpinnings of sex differences in SCZ.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteína Axina , Guanilato Quinases , Plasticidade Neuronal , Neurônios , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Guanilato Quinases/genética , Masculino , Camundongos , Neurônios/metabolismo , Fatores Sexuais , Transdução de Sinais/fisiologia
7.
Nat Commun ; 13(1): 899, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173161

RESUMO

Hexokinase 2 (HK2), which catalyzes the first committed step in glucose metabolism, is induced in cancer cells. HK2's role in tumorigenesis has been attributed to its glucose kinase activity. Here, we describe a kinase independent HK2 activity, which contributes to metastasis. HK2 binds and sequesters glycogen synthase kinase 3 (GSK3) and acts as a scaffold forming a ternary complex with the regulatory subunit of protein kinase A (PRKAR1a) and GSK3ß to facilitate GSK3ß phosphorylation and inhibition by PKA. Thus, HK2 functions as an A-kinase anchoring protein (AKAP). Phosphorylation by GSK3ß targets proteins for degradation. Consistently, HK2 increases the level and stability of GSK3 targets, MCL1, NRF2, and particularly SNAIL. In addition to GSK3 inhibition, HK2 kinase activity mediates SNAIL glycosylation, which prohibits its phosphorylation by GSK3. Finally, in mouse models of breast cancer metastasis, HK2 deficiency decreases SNAIL protein levels and inhibits SNAIL-mediated epithelial mesenchymal transition and metastasis.


Assuntos
Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hexoquinase/metabolismo , Neoplasias/patologia , Proteínas de Ancoragem à Quinase A/metabolismo , Células A549 , Animais , Células CHO , Carcinogênese/patologia , Linhagem Celular Tumoral , Cricetulus , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Desoxiglucose/farmacologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicosilação , Células HCT116 , Células HEK293 , Hexoquinase/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Metástase Neoplásica/patologia , Fosforilação/efeitos dos fármacos , Ratos , Fatores de Transcrição da Família Snail/metabolismo
8.
Mol Biol Rep ; 49(5): 3783-3792, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35179667

RESUMO

BACKGROUND: Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that GSK-3ß is related to cell apoptosis induced by oxidative stress. In this study, we explored whether GSK-3ß inhibition protects human NP cell against apoptosis under oxidative stress. METHODS AND RESULTS: Immunofluorescence staining was used to show the expression of GSK-3ß in human NP cells (NPCs). Flow cytometry, mitochondrial staining and western blot (WB) were used to detect apoptosis of treated NPCs, changes of mitochondrial membrane potential and the expression of mitochondrial apoptosis-related proteins using GSK-3ß specific inhibitor SB216763. Co-Immunoprecipitation (Co-IP) was used to demonstrate the interaction between GSK-3ß and Bcl-2. We delineated the protective effect of GSK-3ß specific inhibitor SB216763 on human NPCs apoptosis induced by oxidative stress in vitro. Further, we showed SB216763 exert the protective effect by preservation of the mitochondrial membrane potential and inhibition of caspase 3/7 activity during oxidative injury. The detailed mechanism underlying the antiapoptotic effect of GSK-3ß inhibition was also studied by analyzing mitochondrial apoptosis pathway in vitro. CONCLUSIONS: We concluded that the GSK-3ß inhibitor SB216763 protected mitochondrial membrane potential to delay nucleus pulposus cell apoptosis by inhibiting the interaction between GSK-3ß and Bcl-2 and subsequently reducing cytochrome c(Cyto-C) release and caspase-3 activation. Together, inhibition of GSK-3ß using SB216763 in NPCs may be a favorable therapeutic strategy to slow intervertebral disc degeneration.


Assuntos
Glicogênio Sintase Quinase 3 beta , Núcleo Pulposo , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Int. j. morphol ; 40(1): .84-90, feb. 2022.
Artigo em Inglês | LILACS | ID: biblio-1385595

RESUMO

SUMMARY: Rheumatoid arthritis (RA), an inflammatory autoimmune disease that causes cartilage degradation and tissue destruction, can affect synovial joints such as the knee joint. The link between the nitrosative stress enzyme inducible nitric oxide synthase (iNOS) and the cytokine interleukin-1 (IL-1β) in RA-induced knee joint synovial membrane damage with and without the incorporation of the GSK3β inhibitor TDZD-8 has never been studied. As a result, we used active immunization method with collagen type II (COII) for twenty one days to induce RA in rats. TDZD-8 (1 mg/kg; i.p.) was given daily into matched immunized rats for three weeks after day 21 (COII+TDZD-8). Blood and tissue samples were taken 42 days after immunization. A dramatic increase in rheumatoid factor (RF) blood levels, as well as considerable synovial tissue damage and inflammatory cell infiltration of the synovial membrane, were used to validate the onset of RA following COII immunization. COII immunization increased tissue levels of iNOS protein and IL- 1β mRNA and protein expression, which TDZD-8 suppressed considerably (p<0.0001). Furthermore, there was a significantly (p<0.001) positive correlation between iNOS, inflammatory biomarkers, and RF. We concluded that TDZD-8 reduced RA-induced IL-1β -iNOS axis-mediated arthritis in the rat knee joint synovium.


RESUMEN: La artritis reumatoide (AR), es una enfermedad autoinmune inflamatoria que causa la degradación del cartílago y la destrucción del tejido, pudiendo afectar las articulaciones sinoviales, como la articulación de la rodilla. No se ha estudiado el vínculo entre la óxido nítrico sintasa inducible por la enzima del estrés nitrosativo (iNOS) y la citocina interleucina-1 (IL-1β) en el daño de la membrana sinovial de la articulación de la rodilla provocado por AR con y sin la incorporación del inhibidor de GSK3β TDZD-8. Utilizamos el método de inmunización activa con colágeno tipo II (COII) durante veintiún días para inducir AR en ratas. Se administró TDZD-8 (1 mg/kg; i.p.) diariamente a ratas inmunizadas emparejadas durante tres semanas después del día 21 (COII+TDZD- 8). Se tomaron muestras de sangre y tejido 42 días después de la inmunización. Se observó un gran aumento de los niveles sanguíneos del factor reumatoideo (FR), así como un daño considerable del tejido sinovial e infiltración de células inflamatorias en la membrana sinovial, para validar la aparición de la AR después de la inmunización con COII. La inmunización con COII aumentó los niveles tisulares de la proteína iNOS y la expresión de proteína y ARNm de IL-1β, que TDZD-8 suprimió considerablemente (p<0,0001). Además, hubo una correlación positiva significativa (p<0,001) entre iNOS, biomarcadores inflamatorios y FR. Concluimos que TDZD- 8 redujo la artritis mediada por el eje IL-1β-iNOS inducida por la AR en la sinovial de la articulación de la rodilla de rata.


Assuntos
Animais , Ratos , Artrite Reumatoide/imunologia , Tiadiazóis/administração & dosagem , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Artrite Reumatoide/induzido quimicamente , Imuno-Histoquímica , Ratos Wistar , Colágeno Tipo II/administração & dosagem , Modelos Animais de Doenças , Interleucina-1beta , Glicogênio Sintase Quinase 3 beta/administração & dosagem , Estresse Nitrosativo/efeitos dos fármacos , Inflamação
10.
Life Sci ; 291: 120267, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974076

RESUMO

Tauopathy is a term that has been used to represent a pathological condition in which hyperphosphorylated tau protein aggregates in neurons and glia which results in neurodegeneration, synapse loss and dysfunction and cognitive impairments. Recently, drug repositioning strategy (DRS) becomes a promising field and an alternative approach to advancing new treatments from actually developed and FDA approved drugs for an indication other than the indication it was originally intended for. This paradigm provides an advantage because the safety of the candidate compound has already been established, which abolishes the need for further preclinical safety testing and thus substantially reduces the time and cost involved in progressing of clinical trials. In the present review, we focused on correlation between tauopathy and common diseases as type 2 diabetes mellitus and the global virus COVID-19 and how tau pathology can aggravate development of these diseases in addition to how these diseases can be a risk factor for development of tauopathy. Moreover, correlation between COVID-19 and type 2 diabetes mellitus was also discussed. Therefore, repositioning of a drug in the daily clinical practice of patients to manage or prevent two or more diseases at the same time with lower side effects and drug-drug interactions is a promising idea. This review concluded the results of pre-clinical and clinical studies applied on antidiabetics, COVID-19 medications, antihypertensives, antidepressants and cholesterol lowering drugs for possible drug repositioning for management of tauopathy.


Assuntos
Antivirais/farmacologia , COVID-19/fisiopatologia , Reposicionamento de Medicamentos , Hipoglicemiantes/farmacologia , Tauopatias/tratamento farmacológico , Antidepressivos/farmacologia , Anti-Hipertensivos/farmacologia , Apoptose/efeitos dos fármacos , Diabetes Mellitus Tipo 2/fisiopatologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Terapia de Alvo Molecular/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tauopatias/fisiopatologia , Tratamento Farmacológico da COVID-19
11.
Naunyn Schmiedebergs Arch Pharmacol ; 395(3): 377-380, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35076714

RESUMO

Almost every human organ has a poor ability to regenerate, notable exceptions are liver, skin, gut, etc. Molecular and cellular underpinnings of liver regeneration might pave the way for novel treatments concerned with chronic liver disorder. Such treatments would eliminate the disadvantages of liver transplantation, such as a scarcity of donor organs, a lengthy waitlist, significant medical expenses, surgical complications, and the necessity for lifelong immunosuppressive medications. Advancement in the development of regenerative therapy is giving hope to those suffering from end-stage liver disorder. The regeneration process is unique, intricate, and well coordinated, which involve the interaction of numerous signaling pathways, cytokines, and growth factor. Various signaling pathways for liver regeneration are HO-1/BER pathway, Tweak/Fn14 signaling pathway, Hippo pathway, Wnt/beta-catenin pathway, Hedgehog signaling pathway, bile acids repairing pathway, serotonin (5HT) pathway, estrogen pathway, thyrotropin-releasing hormone (TRH) pathway, insulin repairing pathway, etc. The in vitro scientific literature revealed that numerous GSK-3 ß inhibitors (LY 2090314, AR-A014418, Tideglusib, Solasodine, CHIR99021, 9-ING-41, SB-216763) play an important role in stimulating the liver regeneration process. Similarly, from the above discussion, the direction is highlighted to emphasize the proposed molecular Wnt/ß-catenin signaling pathway which is associated with GSK-3 ß inhibition for the induction of the repairing and regeneration process.


Assuntos
Doença Hepática Terminal/terapia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Regeneração Hepática/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Regeneração Hepática/fisiologia , Transdução de Sinais/efeitos dos fármacos
12.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055183

RESUMO

Parkinson's disease (PD) is a progressive movement disorder caused by nigrostriatal neurodegeneration. Since chronically activated neuroinflammation accelerates neurodegeneration in PD, we considered that modulating chronic neuroinflammatory response might provide a novel therapeutic approach. Glycogen synthase kinase 3 (GSK-3) is a multifunctional serine/threonine protein kinase with two isoforms, GSK-3α and GSK-3ß, and GSK-3ß plays crucial roles in inflammatory response, which include microglial migration and peripheral immune cell activation. GSK-3ß inhibitory peptide (IAGIP) is specifically activated by activated inhibitory kappa B kinase (IKK), and its therapeutic effects have been demonstrated in a mouse model of colitis. Here, we investigated whether the anti-inflammatory effects of IAGIP prevent neurodegeneration in the rodent model of PD. IAGIP significantly reduced MPP+-induced astrocyte activation and inflammatory response in primary astrocytes without affecting the phosphorylations of ERK or JNK. In addition, IAGIP inhibited LPS-induced cell migration and p65 activation in BV-2 microglial cells. In vivo study using an MPTP-induced mouse model of PD revealed that intravenous IAGIP effectively prevented motor dysfunction and nigrostriatal neurodegeneration. Our findings suggest that IAGIP has a curative potential in PD models and could offer new therapeutic possibilities for targeting PD.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase I-kappa B/metabolismo , Doença de Parkinson/tratamento farmacológico , Peptídeos/administração & dosagem , Animais , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Células HCT116 , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Peptídeos/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/farmacologia
13.
Eur J Med Chem ; 229: 114095, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995924

RESUMO

The natural product harmine, a representative ß-carboline alkaloid from the seeds of Peganum harmala L. (Zygophyllaceae), possesses a broad spectrum of biological activities. In this study, a novel series of harmine derivatives containing N-benzylpiperidine moiety were identified for the treatment of Alzheimer's disease (AD). The results showed that all the derivatives possessed significant anti-acetylcholinesterase (AChE) activity and good selectivity over butyrylcholinesterase (BChE). In particular, compound ZLWH-23 exhibited potent anti-AChE activity (IC50 = 0.27 µM) and selective BChE inhibition (IC50 = 20.82 µM), as well as acceptable glycogen synthase kinase-3 (GSK-3ß) inhibition (IC50 = 6.78 µM). Molecular docking studies and molecular dynamics simulations indicated that ZLWH-23 could form stable interaction with AChE and GSK-3ß. Gratifyingly, ZLWH-23 exhibited good selectivity for GSK-3ß over multi-kinases and very low cytotoxicity towards SH-SY5Y, HEK-293T, HL-7702, and HepG2 cell lines. Importantly, ZLWH-23 displayed efficient reduction against tau hyperphosphorylation on Ser-396 site in Tau (P301L) 293T cell model. Collectively, harmine-based derivatives could be considered as possible drug leads for the development of AD therapies.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Antineoplásicos/química , Carbolinas/síntese química , Inibidores da Colinesterase/síntese química , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carbolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade
14.
Brain Res ; 1778: 147768, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968440

RESUMO

Lysosomal dysfunction is an essential pathogenesis of autophagic neuronal injury after ischemic stroke. As a result of cerebral ischemia, transcription factor EB (TFEB) is greatly phosphorylated by prominently activated glycogen synthase kinase-3ß (GSK-3ß). This increased TFEB phosphorylation decreases its nuclear translocation and subsequently leads to reduced lysosomal biosynthesis, which ultimately results in lysosomal dysfunction. The present study is to investigate whether the lysosomal dysfunction in neurons can be restored to alleviate post-stroke damage by GSK-3ß inhibition. The GSK-3ß activity was inhibited by pre-treatment with CHIR-99021 (CHIR) for 3 days before middle cerebral artery occlusion (MCAO) surgery in rats. Besides, the lysosomal capacity was altered by pre-administration with Bafilomycin A1 (Baf-A1) and EN6, respectively. Twenty-four hours after MCAO/reperfusion, the penumbral tissues were obtained to detect the GSK-3ß, cytoplasmic and nuclear TFEB, and proteins in autophagic/lysosomal pathway by western blot and immunofluorescence, respectively. Meanwhile, the infarct volume, neurological deficits and neuron survival were assessed to evaluate the neurological outcomes elicited by GSK-3ß inhibition. The results demonstrated that the neurological injury could be significantly mitigated by GSK-3ß inhibition in MCAO + CHIR group, compared with that in MCAO group. Moreover, CHIR-facilitated TFEB nuclear translocation in neurons was coupled with reinforced lysosomal activities and attenuated autophagic substrates. However, GSK-3ß inhibition-induced neuroprotection was greatly counteracted by Baf-A1-weakened lysosomal capacity. Conversely, EN6-reinforced lysosomal activities further ameliorated the autophagic/lysosomal signaling, and synergistically alleviated the neurological damage upon GSK-3ß inhibition after MCAO/reperfusion. Our data suggests that GSK-3ß inhibition-augmented neuroprotection against ischemic stroke is elicited by restoring the lysosomal dysfunction in neurons.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , AVC Isquêmico/tratamento farmacológico , Lisossomos , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Modelos Animais de Doenças , Masculino , Piridinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley
15.
Bioorg Chem ; 119: 105537, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902644

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) has become an attractive target for the treatment of diabetes. Compound I is an indole-based GSK-3ß inhibitor designed from the Meridianin C, a marine natural product (MNP) isolated from Aplidium meridianum. However, this compound has a moderate inhibitory activity toward GSK-3ß (IC50 = 24.4 µM), moderate glucose uptake (38%), and especially, a low oral bioavailability (F = 11.4%). In the present study, applying the structure-based design strategy, a series of derivatives modified on the indole moiety were synthesized based on the lead compound I, followed by evaluating their cytotoxic activity, antihyperglycemic activity, and kinase inhibitory activity. Among this series, compound 6x with a sulfonyl group displayed the highest glucose uptake (83.5%) in muscle L6 cells, showing much higher inhibitory activity against GSK-3ß (IC50 = 5.25 µM). Molecular docking indicated that compound 6x was properly inserted into the ATP-binding binding pocket of GSK-3ß with a higher docking score (-8.145 kcal/mol) compared with that of compound I (-6.950 kcal/mol), interpreting the higher kinase inhibitory activity toward GSK-3ß. Remarkably, compound 6x showed favorable drug-like properties, including significantly better oral bioavailability (F = 47.4%) and no two-week acute toxicity at a dose of 1 g/kg. Our findings suggest that these MNP-derived sulfonyl indole derivatives could be used as lead compounds for the development of anti-hyperglycemic drugs.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta/metabolismo , Indóis/administração & dosagem , Indóis/química , Indóis/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/metabolismo , Ratos , Relação Estrutura-Atividade , Urocordados/química
16.
Chem Biol Interact ; 352: 109781, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34922902

RESUMO

Diabetic nephropathy (DN) is one of the manifestations of systemic microangiopathy in diabetes. Trifolium alexandrinum extract (TAE) contains biologically active phenolic compounds such as hesperetin (HES) and quercetin, possess various pharmacological properties, including anti-inflammatory, and anti-oxidative potentials. The present study aimed to assess the therapeutic effects and mechanisms underlying the anti-diabetic, antioxidant, and anti-inflammatory effects of HES and quercetin extracted from TAE, and TAE in STZ-induced DN. Male albino rats (170 ± 10 g) were divided into group (1); control rats and groups (2-5); diabetic/HFD were intraperitoneal (i.p.) injected with STZ (35 mg/kg), diabetic rats were randomly classified into STZ, STZ + HES (40 mg/kg), STZ + quercetin (50 mg/kg), and STZ + TAE (200 mg/kg) groups. After 5 weeks, blood and kidney samples were collected for further biochemical, western blotting and histopathological studies. Serum renal functions, renal oxidative status biomarkers and proinflammatory cytokines were determined. The results revealed that there were significant increases in urea, BUN, creatinine, ALP, total protein, albumin, and globulin with a significant decrease in Na+ and K+ levels, as well as significant elevation in TBARS, TGF-ß, TNF-α, IL-6 and the expression levels of GSK-3ß, as well as significant decline in TAC, GSH and CAT levels in STZ-treated group compared to the control rats. The previous deleterious alterations were significantly ameliorated after the treatment of diabetic rats with HES, quercetin and TAE. In conclusion, our data demonstrated that HES, quercetin and TAE could be used as potent therapeutic agents to counter DN through antioxidant, anti-inflammatory, and antidiabetic effects.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Hesperidina/farmacologia , Fitoterapia , Quercetina/farmacologia , Trifolium/química , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipoglicemiantes/farmacologia , Inflamação/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
17.
Biomed Pharmacother ; 145: 112402, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34773763

RESUMO

PAI-1 and CTGF are overexpressed in kidney diseases and cause fibrosis of the lungs, liver, and kidneys. We used a rat model of unilateral ureteral obstruction (UUO) to investigate whether 6-BIO, a glycogen synthase kinase-3ß inhibitor, attenuated fibrosis by inhibiting PAI-1 and CTGF in vivo. Additionally, TGFß-induced cellular fibrosis was observed in vitro using the human kidney proximal tubular epithelial cells (HK-2), and rat interstitial fibroblasts (NRK49F). Expression of fibrosis-related proteins and signaling molecules such as PAI-1, CTGF, TGFß, αSMA, SMAD, and MAPK were determined in HK-2 and NRK49F cells using immunoblotting. To identify the transcription factors that regulate the expression of PAI-1 and CTGF the promoter activities of AP-1 and SP-1 were analyzed using luciferase assays. Confocal microscopy was used to observe the co-localization of AP-1 and SP-1 to PAI-1 and CTGF. Expression of PAI-1, CTGF, TGFß, and α-SMA increased in UUO model as well as in TGFß-treated HK-2 and NRK49F cells. Furthermore, UUO and TGFß treatment induced the activation of P-SMAD2/3, SMAD4, P-ERK 1/2, P-P38, and P-JNK MAPK signaling pathways. PAI-1, CTGF, AP-1 and SP-1 promoter activity increased in response to TGFß treatment. However, treatment with 6-BIO decreased the expression of proteins and signaling pathways associated with fibrosis in UUO model as well as in TGFß-treated HK-2 and NRK49F cells. Moreover, 6-BIO treatment attenuated the expression of PAI-1 and CTGF as well as the promoter activities of AP-1 and SP-1, thereby regulating the SMAD and MAPK signaling pathways, and subsequently exerting anti-fibrotic effects on kidney cells.


Assuntos
Indóis/farmacologia , Nefropatias/tratamento farmacológico , Túbulos Renais Proximais/efeitos dos fármacos , Oximas/farmacologia , Animais , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/genética , Inibidores Enzimáticos/farmacologia , Fibrose , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Nefropatias/patologia , Túbulos Renais Proximais/patologia , Masculino , Inibidor 1 de Ativador de Plasminogênio/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/efeitos dos fármacos , Fator de Transcrição Sp1/genética , Fator de Transcrição AP-1/efeitos dos fármacos , Fator de Transcrição AP-1/genética
18.
Pharmacol Res ; 175: 105986, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800627

RESUMO

During cardiac reperfusion after myocardial infarction, the heart is subjected to cascading cycles of ischaemia reperfusion injury (IRI). Patients presenting with this injury succumb to myocardial dysfunction resulting in myocardial cell death, which contributes to morbidity and mortality. New targeted therapies are required if the myocardium is to be protected from this injury and improve patient outcomes. Extensive research into the role of mitochondria during ischaemia and reperfusion has unveiled one of the most important sites contributing towards this injury; specifically, the opening of the mitochondrial permeability transition pore. The opening of this pore occurs during reperfusion and results in mitochondria swelling and dysfunction, promoting apoptotic cell death. Activation of mitochondrial ATP-sensitive potassium channels (mitoKATP) channels, uncoupling proteins, and inhibition of glycogen synthase kinase-3ß (GSK3ß) phosphorylation have been identified to delay mitochondrial permeability transition pore opening and reduce reactive oxygen species formation, thereby decreasing infarct size. Statins have recently been identified to provide a direct cardioprotective effect on these specific mitochondrial components, all of which reduce the severity of myocardial IRI, promoting the ability of statins to be a considerate preconditioning agent. This review will outline what has currently been shown in regard to statins cardioprotective effects on mitochondria during myocardial IRI.


Assuntos
Cardiotônicos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Cardiotônicos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitofagia/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Canais de Potássio/fisiologia
19.
Bioorg Chem ; 119: 105512, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861627

RESUMO

A new series of novel amide conjugates of pyrimidin-4-one and aromatic/heteroaromatic /secondary cyclic amines has been synthesized and their in vitro antiproliferative activities against a panel of 60 human cancer cell lines of nine different cancer types were tested at NCI. Among the synthesized compounds, compound (4i) showed significant anti-proliferative activity. Compound (4i) displayed most potent activity against the breast tumor cell line T-47D and CNS tumor cell line SNB-75 exhibiting a growth of 1.93 % and 14.63 %, respectively. ADMET studies of the synthesized compounds were also performed and they were found to exhibit good drug like properties. Compound (4i) was found to exhibit potential inhibitory effect over GSK-3ß with IC50 value of 71 nM. The molecular docking studies revealed that (4i) showed good binding affinity to GSK-3ß and revealed multiple H-bonding and p-cation interactions with important amino acid residues on the receptor site. Compound (4i) may thus serve as a potential candidate for further development of novel anticancer therapeutics.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Amidas/síntese química , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
20.
Bioorg Chem ; 119: 105516, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856444

RESUMO

Both ruthenium (Ru) and isoquinoline (IQ) compounds are regarded as potential anticancer drug candidates. Here, we report the synthesis and characterization of three novel cyclometalated Ru(II)-isoquinoline complexes: RuIQ-3, RuIQ-4, and RuIQ-5, and evaluation of their in vitro cytotoxicities against a panel of cell lines including A549/DDP, a cisplatin-resistant human lung cancer cell line. A549/DDP 3D multicellular tumor spheroids (MCTSs) were also used to detect the drug resistance reversal effect of Ru(II)-IQ complexes. Our results indicated that the cytotoxic activities against cancer cells of Ru(II)-IQ complexes, especially RuIQ-5, were superior compared with cisplatin. In addition, RuIQ-5 exhibited low toxicity towards both normal HBE cells in vitro and zebrafish embryos in vivo. Further investigation on cellular mechanism of action indicated that after absorption by A549/DDP cells, RuIQ-5 was mainly distributed in the nucleus, which is different from cisplatin. Besides, RuIQ-5 could induce apoptosis through mitochondrial dysfunction, reactive oxygen species (ROS) accumulation, ROS-mediated DNA damage, and cycle arrest at both S and G2/M phases. Moreover, RuIQ-5 could inhibit the overexpression of Nrf2 through regulation of Akt/GSK-3ß/Fyn signaling pathway and hindering the nuclear translocation of Nrf2. Based on these findings, we firmly believe that the studied Ru(II)-IQ complexes hold great promise as anticancer therapeutics with high effectiveness and low toxicity.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Isoquinolinas/farmacologia , Rutênio/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Isoquinolinas/química , Estrutura Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...